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Abstract
Behavioural change interventions represent a powerful
means for tackling a number of health and well-being
issues, from obesity to stress and addiction. In the current
medical practice, the change is induced through tailored
coaching, support and information delivery. However, with
the advent of smartphones, innovative ways of delivering
interventions are emerging. Indeed, mobile phones,
equipped with an array of sensors, and carried by their
users at all times, enable therapists to both learn about
the user behaviour, and impact the behaviour through the
delivery of more relevant and personalised information. In
this work we propose harnessing pervasive computing to
not only learn from users’ past behaviour, but also predict
future actions and emotional states, deliver interventions
proactively, evaluate their impact at run-time, and over
time learn a personal intervention-effect model of a
participant.

Author Keywords
Behaviour Change Interventions, Anticipatory computing,
Mobile Computing, Mobile Sensing.

ACM Classification Keywords
H.1.2 [User/Machine Systems]; J.4 [Social and Behavioral
Sciences].



Introduction
Mobile devices, such as smartphones, represent more
than occasionally used tools, and nowadays coexist with
their users throughout the day. Therefore, smartphones
provide always-on connectivity and the most direct means
of information delivery. In addition, these devices are
equipped with sensors that can provide momentarily data
about a multitude of contextual aspects of the user and
the situation, including user’s location, movement, social
environment and emotional state. The resulting synergy of
the user and the smartphone enables not only monitoring
and understanding, but also influencing human behaviour.
Smartphones’ context-awareness and interactivity
lead to innovative applications in areas spanning from
commerce to public safety. For example, location-relevant
ads can be shown to a roaming user looking for a
restaurant, alternative routes can be suggested to a driver
stuck in traffic, while a careless pedestrian can be alarmed
when his phone notices an approaching vehicle [26].

Recently, the smartphone’s potential to impact human
behaviour has been proposed as a cornerstone of digital
behaviour change interventions (dBCIs) [11]. Obesity,
depression, alcohol and tobacco abuse are a few of the
health and well-being issues that can be successfully
tackled through a change in patients’ behaviour. DBCIs
aim to support those who seek the change, by providing
timely and relevant information about the actions that the
patient should take. Unlike the traditional
therapist–patient interaction, smartphone-based
interventions scale to a potentially very large number of
users, and can be delivered in accordance to user’s
momentarily behaviour and state.

While dBCIs are yet to become widespread, we can
already argue that the concept of dBCI does not fully

utilise the affordances of mobile computing. In this paper
we present our stance that dBCIs should base their
awareness of the user not only on the currently inferred
context, sensed via smartphone sensors, but also on the
future context, predictions of which should be based on
the context change models learnt through user and
context monitoring. Moreover, we propose to go beyond
prediction, and include anticipation – the ability to foresee
the effect of current and future actions – when it comes
to behaviour change interventions. This concept termed
anticipatory mobile dBCIs delivers proactive health and
well-being interventions, an example of which would be a
mobile phone application that can anticipate sedentary
behaviour of a person at risk of obesity, and suggests an
action, e.g., a joint jogging exercise with a friend.

In the rest of the paper we firstly describe how dBCI
can be tailored to, and delivered via mobile phones, with a
specific attention paid to smartphone sensing and context
awareness. We present the fundamental ideas at the basis
of anticipatory computing, and argue that mobile phones
represent a suitable platform for its implementation. We
then propose anticipatory mobile dBCI, and discuss its key
concepts: context anticipation and action-effect modelling.
Many challenges have to be addressed in order to design
and implement this paradigm. They include issues in
diverse areas of computer science including mobile sensing,
behaviour learning and prediction, and human-computer
interaction (HCI). Indeed, some of these challenges
are fundamental for mobile computing in general (e.g.,
resource consumption) while some, such as how to foresee
and impact futures of mobile users, are more exclusive
to anticipatory mobile dBCIs. In this paper we particularly
pay attention to the latter obstacles towards the realisation
of anticipatory mobile dBCIs. Finally, we conclude with
an overview of related and our future work in this domain.



Mobile Behaviour Change Interventions
Smoking and alcohol addiction, stress and obesity are just
some of the leading causes of reduced life expectancy that
can be successfully tackled with a change in patients’
behaviour. Behavioural change interventions (BCIs) are a
psychological method that aims to elicit a positive
behaviour change. These interventions commonly include
collecting relevant information about the participant,
setting goals and plans for the participant, monitoring
behaviour, and providing feedback in a face-to-face
session. BCIs therefore require substantial resources, and
the Web has been recognised as distribution tool that can
help alleviate some of the requirements. Digital behaviour
change interventions (dBCIs) can reach to a participant
without a need for a face-to-face contact, can be delivered
at any time of day, and can scale to a large number of
users. It is worth noting that interventions might not be
limited to wellbeing. For example, they might be designed
for example to promote “green” living and a more
cohesive society.

With more than 5 billion subscribers that carry their
devices with them at all times, mobile phones represent
the most direct point of contact with almost any individual
in the world. Recently, researchers and practitioners
have started utilising mobile devices for dBCIs, first via
SMS messages [5], and then increasingly via smartphone
applications [7]. The affordances of the smartphone,
including powerful processing capabilities, a richer
interaction interface and an array of sensors – location,
proximity, light, acceleration sensors, to name a few
– have a potential to not only augment, but completely
transform the way behaviour changes are induced.

The key property of smartphone-based dBCIs is that the
user monitoring part of the intervention can be automated

through sensing. User movement, physical activity, even
stress and emotional state can be inferred from the
sensors. This in turn can serve as a basis for reactive
timely interventions that will act in a context-aware
manner, where the context is provided by smartphone
sensing. In BeWell [8], for example, core aspects of
physical, social, and mental wellbeing – sleep, physical
activity, and social interactions – are monitored via the
sensors embedded in the smartphone. The device then
provides feedback to the user by showing an aquatic
ecosystem where the number and the activity of animals
depend on user’s wellbeing.

Context inference is a well established research area of
mobile computing. Its core lies in machine learning, as
raw sensor data from mobile phones are seldom of direct
interest. The data is usually processed through sensing,
feature extraction and modelling phases, before high-level
inferences are made. Increasingly, powerful machine
learning algorithms and fine-grained sensor data are being
used as a basis for the prediction of future events. Such
predictions have been predominantly explored in the
mobility domain, where substantial research work has
been done on predicting user trajectories, geographical
coordinates, and visits to significant places [2].

Initial mobile sensing work did not exploit the fact that
phones closely integrate with the user and represent the
most direct way of impacting behaviour. In a transition
that Campbell and Choudhury call from smart to
cognitive phones [4], we can expect smartphones to
become proactive personal assistants that anticipate and
react upon patterns learnt from our daily life. Such
smartphones have the potential to co-exist with their
users and narrow the mismatch between the technology
and humanity. They will allow for user’s movement and



action anticipation; they will know when to attract user’s
attention and when to stay silent; and they will
proactively manage energy and wireless resources. Finally,
predictive smartphones will close the loop providing
valuable feedback and information that will shape user’s
future behaviour.

Anticipatory Mobile Computing
An anticipatory system is defined by Rosen as: “A
system containing a predictive model of itself and/or its
environment, which allows it to change state at an instant
in accord with the model’s predictions pertaining to a
later instant” [19]. Anticipation is deeply integrated with
intelligence, and biological systems often base decisions for
their actions on predictions. These predictions are based on
models that evolve over time. We argue that smartphones
fulfil the necessary prerequisites for anticipatory computing:
with the help of built-in sensors phones are context-aware,
they are capable of fast information processing
necessary for predictions, and through interaction
with the user they can impact the flow of future.

Figure 1: Anticipatory mobile systems predict context
evolution and the impact their actions can have on the
predicted context. The feedback loop consisting of a mobile
and a human enables the system to affect the future.

An anticipatory system relies on the prediction of its
environment, thus embraces some of the ideas expressed at
the end of the last section. However, Panticipation involves
more than merely prediction – it requires the understanding

of how actions within the system might affect the future.
In Figure 1 we sketch an anticipatory mobile system that
senses the context and builds a model of the environment
evolution, which gives it the original predicted
future. The system then evaluates the possible outcome
of its actions on the future. An action that leads to the
preferred modified future is realised through the feedback
loop that involves interaction of the system with the user.

Although anticipatory systems have been attempted before,
predominantly in robotics [23], the smartphone represents
a natural platform for such a system. Not only can
smartphones sense and infer the context, build models of
the context evolution, but with smartphones the interactive
component of anticipatory computing is a reality.
Users rely on smartphones for a range of tasks including
communication, navigation, and information search.
Besides prediction, anticipation requires the ability to filter
out irrelevant aspects of the context, and intuitively discard
actions that are likely to lead to unfavourable outcome.
Humans are well versed in holistic reasoning and picking
out relevant information. With smartphones we can
establish a bond between human and artificial anticipation,
harness phone’s sensing, computing and communication
abilities to augment human reasoning, but also bootstrap
machine learning models with human knowledge.

Anticipatory Mobile dBCIs
We argue that behaviour change interventions can
be made timelier and more efficient if delivered through
an anticipatory mobile computing system, and term such
interventions anticipatory mobile dBCIs. In traditional
BCIs self-reported user’s experiences guide the intervention
tailored by the therapist. In web-based and mobile
dBCIs, interventions are tailored on-the-fly, responding
to the immediate user’s context. In anticipatory dBCIs,



however, interventions are selected based on the predicted
context. This proactive reasoning pushes anticipatory
dBCIs further into the area of preventive healthcare.

We now give an example of an anticipatory dBCI mobile
application that proactively tackles depression. Decreased
movement, the lack of socialising, and irregular sleep pat-
terns are characteristic symptoms of depression. Depressed
people often exhibit sedentary lifestyle [20], and phone’s
accelerometer, GPS and Bluetooth sensors can be used to
detect such behaviour. But even beyond inference, our app
could embrace an existing solution to predict the level of
user mobility; some of the mobility prediction approaches
are surveyed in [2]. Smartphones can also gauge social-
isation via Bluetooth sensing [17]. In our app, we could
monitor Bluetooth contacts, build a “socialisation” model
and then spot periods when the user is predicted to be both
alone and not mobile. In addition, we could harness existing
sleep pattern inference models (such that used in BeWell),
and extend it to predict poor sleeping habits. Once depres-
sion is predicted, our app selects and uses a behavioural
intervention tool, for example shows a link to a pair of
discounted theatre tickets, incentivising the participant to
go out and socialise. As the intervention progresses, our
app learns about the impact of different tools on user’s be-
haviour, e.g., a change in mobility after a certain message
shown, and adjusts the therapy to the specific user.

Implementation Issues and Open Research
Challenges
Rooted in mobile sensing, anticipatory mobile dBCI face
challenges such as energy inefficiency of continuous
sensing and reliable classification of sensed phenomena.
On the behavioural intervention side, further experiments
are needed in order to evaluate the benefits, if any, of
mobile dBCIs. A thorough discussion of challenges in

mobile sensing, anticipatory mobile computing and mobile
interventions is available elsewhere [9, 15, 7], therefore, in
the rest of the section we concentrate on aspects that are
unique to anticipatory mobile dBCIs.

Figure 2: Machine learning is used to infer and predict user
context from phone’s sensors, but also to create a model of
how actions from the behaviour intervention toolbox impact
the health and well-being state of the user.

Learning with the User. Machine learning techniques
play a major role in the design of anticipatory mobile
systems. In Figure 2 we sketch two major aspects in
which machine learning supports anticipatory mobile
dBCIs. On one side, machine learning is used to infer and
predict context in which a user is, as well as the user’s
internal context, from phone usage and mobile sensor
data. Rapid advancements of mobile computing, including
an ever increasing sensing capabilities of smartphones
promoted a flurry of research that deals with context
inference and prediction, ranging from activity recognition
to the forecast of user’s next location [22], and to the
inference of human emotions [18], stress levels [12] and
interruptibility [16]. Being able to accurately predict the
evolution of context and behaviour is crucial for
anticipatory dBCIs to function properly. On the other side



of Figure 2 we have a machine learning model of the
impact of interventions on predicted user behaviour. This
model is labelled tool-effect model, and aims to uncover
the relationship between available behaviour change
intervention tools, such as suggestions shown to a user via
smartphone and the induced change in behaviour, which
can be detected via smartphone sensors. This concept is
unique to anticipatory mobile dBCIs, and is yet to be
explored in the area of mobile computing, and in this
paper we discuss means of realising tool-effect modelling.

Reinforcement Learning. The key issue in tool-effect
modelling is mapping the space of behaviour change
induced by each of the BCI tools, so that tools leading to
improved behavioural outcome are identified.
Reinforcement learning where an agent uses BCI tools in
the intervention environment (which for example can be
represented through a Markov decision process) is a
natural way to model the problem [24]. In every step, a
decision to use a certain tool comes with a change in
behaviour and elicit a reward that reflects how positive the
change is. To bootstrap the learning process, the initial
tool selection logic could rely on the psychiatric practice –
an expert therapist would propose tools according to the
target aspect of behaviour, the context in which a tool
can be fired and even the traits of a specific patient.

Measuring Behaviour. To model the tool-effect loop
we need to evaluate the effect of an intervention action,
i.e., compare the original predicted behaviour and the
modified predicted behaviour. The metric used for
comparison depends on the purpose of the intervention.
For example, if dealing with obesity, one possible
behaviour metric can be the amount of calories consumed
in a day. More generally, however, the metric should be
carefully tailored in a collaboration among health

specialists, behavioural psychologists and computer
scientists. The metric should be relevant to the
behavioural aspect of interest, but should also be suitable
for the design of the underlying machine learning
algorithms of the DBCI systems.

Latent Learning without Interfering. Reinforcement
learning enhances the knowledge about user’s behaviour
through exploration. Interacting with the participant
through a previously unused tool refines the behavioural
model, as we learn more about how the user reacts to this
tool. From the practical therapy point of view, however,
we face a dilemma: use a tool that is known to elicit a
positive behavioural change, or experiment with an
unused tool that might yield an even better outcome. In
reinforcement learning this dilemma is known as
exploration vs. exploitation trade-off. Strategies for
solving the dilemma in an anticipatory mobile dBCI
setting should be aware of the possible irreversible
negative consequences of a wrong intervention.

As hinted above, the domain we are working in – human
behaviour – is very sensitive, and interventions can lead to
serious consequences. This is particularly important when
it comes to reinforcement learning that is no more free to
explore the action-reaction space rapidly. Rather, the
system should try to learn as much as possible about the
user without explicitly interacting with the user through
behaviour change interventions. Such learning can be
realised through latent learning, a form of learning where
a subject is immersed into an unknown environment or a
situation without any rewards or punishments associated
to them [25]. Despite the lack of obvious incentives for
learning, experiments with both humans and animals show
that subjects form a cognitive map of the environment
solely because they experience the world around them.



Later, that cognitive map figures in decision making,
essentially behaving as a learnt concept. The artificial
implementation of latent learning has been demonstrated
in [23]. Phones through multimodal sensing can harness
latent learning to build a model of the user behaviour with
respect to certain actions that correspond to ones
targeted by the BCI tools. For example, suppose that in a
dBCI that aims to tackle depression the system can
provide the user with the suggestion to go out for a dinner
with friends. We can get an a priori knowledge of how
this suggestion would affect the user, for example if on a
separate occasion we detect that the participant went out
for a dinner with friends, and we gauge the depression
levels, estimated through mobility and physical activity
metrics, before and after the dinner. Defining how the
expected action – going out with friends – should
manifest from the point of view of sensors – e.g., a
number of Bluetooth contacts detected, location, time of
the day – is one of the prerequisites for practical latent
learning. Again, interdisciplinary efforts are crucial to
ensure that the detected reaction corresponds to the one
that should be elicited by the tool.

HCI in Anticipatory Mobile dBCIs. Effective inclusion
of a user in the learning loop requires an appropriate
interface between the participant and the system. As
noted by Russell et al. [21], a system that autonomously
brings decisions and evolves over the course of
its lifetime needs to be transparent to the user. Through
the user interface such a system must be understandable
by the user and capable of review, revision, and
alteration. In the behaviour intervention case, interaction
should be designed to conform to the best practices in
BCI delivery. For example, the content should be framed
to emphasise that the tool can help, yet it is fundamental
to avoid to harass and patronise the participant.

Large-scale Anticipatory Mobile dBCIs. With billions
of smartphones in the world, mobile dBCIs can reach out
to an unprecedented number of participants. Context
inference through mobile sensing becomes challenging as
observable manifestations of a certain behavioural aspect
vary over a large number of individuals. Building
individual inference models is a slow and cumbersome
solution, however, the problem of scale becomes even
more pronounced when we talk about tool-effect models,
corresponding to the right half of Figure 2. Here,
individualism in intervention-reaction space is likely to be
highly pronounced – what helps one person quit smoking
might not work for a different person. At the same time
we want to minimise the search for an intervention tool
that works for a specific participant.

In [10] Lane et al. propose community similarity networks
(CSN) that enable aggregation and sharing of smartphone
sensor data gathered from like-behaved individuals. This
joint data significantly speeds up training of machine
learning classifiers – similar users can share the same
model trained on aggregated data. We propose an
extension of CSNs for anticipatory mobile dBCIs. In such
networks, a group of similar users can share a behavioural
model built on the aggregated tool-effect data. The exact
formation of CNSs should be guided by the therapists’
expertise, e.g., suggesting that male teenagers respond to
a certain intervention in the same way, but also by
information learnt through the intervention process via
sensing, e.g., realising that participants who walk to work
tend to react positively to a certain stress-relief advice. In
addition, different intervention tools are likely to have
distinct effects in different contexts. By aggregating data
over multiple users it might be possible to build
context-dependent tool-effect models.



Privacy and Ethics. Location, collocation, physical
activity, emotion, together with personal health
information can be necessary for mobile dBCIs. Misuse
and leaking of such information can be a serious deterrent
for mobile dBCI uptake. The most interesting aspect is
related to the fact that mechanisms should be put in
place in order to guarantee the privacy of data not only
describing the current state of the individuals, but also
about his/her predicted futures. A more general question
arises: who owns the information extracted from the
personal data of an individual?

Moreover, there is a need for balancing system
performance and privacy in mobile sensing [9]. For
example, processing voice data for speaker recognition can
be done efficiently if sound samples are sent to a central
server for processing, yet, transmission of sensitive speech
data presents a privacy risk. In addition, mismatched
privacy policies of users who shared the same sensed
context can reveal information about people who did not
agree to have their information shared, or do not even
participate in the dBCI [15]. Finally, the responsibility
chain in this domain is yet to be defined. Unsuccessful
interventions can have serious consequences. If a
depression prevention dBCI fails to recognise a critical
episode that leads to the loss of the participant’s life, is
the blame on the intervention designer, or on the person
who devised the underlying machine learning components?

Related Work
Anticipatory computing has recently gained substantial
commercial interest. Applications such as MindMeld,
GoogleNow (www.google.co.uk/landing/now/), Apple
Siri (www.apple.com/ios/siri) and Microsoft Cortana
(www.windowsphone.com/en-us/features-8-1) tap into
users’ personal data in order to provide just-in-time context-

aware services. MindMeld (www.expectlabs.com/mindmeld)
uses real-time speech analysis and Web harvesting
to enhance online video conferencing with information
that the involved parties are likely to find relevant in near
future. GoogleNow, Siri and Cortana are more general
smartphone applications that provide any information
a user may need, but did not explicitly ask for. The
implementation details of these systems are not publicly
available, however, we can argue that these apps are not
anticipatory in the full sense of the word. The applications
are context aware and personalised, yet they do not
predict nor act in an effort to change the predicted future.

With smartphones behavioural interventions can be
tailored to the user and the context in which the user is.
Both of these aspects are shown to add value to the
intervention [13, 3]. Consequently, the importance of
frameworks for practical implementation of
smartphone-based context-aware dBCIs has been noted.
UBhave [11], for example, enables development of
personalised models of user behaviour that are used for
deciding on the time and the content of the intervention.
However, neither prediction nor anticipation figure in
UBhave, and the models are built on past sensed data.
Mobile phones represent an attractive platform for
psychological research due to the ability to collect
ecologically valid data from large populations [14]. In
particular, psychological computing is advocated by Bao
et al. as a class of computing systems that sense user’s
inner context and utilises it on the core system level [1].

Anticipatory mobile dBCIs rely on sensing to infer user
inner state and tightly integrate the user into the mobile
computing system, thus fulfil the definition of
psychological computing. Moreover, our work is not
merely inner context-aware: machine learning models used

www.google.co.uk/landing/now/
www.apple.com/ios/siri
www.windowsphone.com/en-us/features-8-1
www.expectlabs.com/mindmeld


for tool-effect evaluation also capture user’s reasoning
about anticipation.

Summary and Future Work
Ongoing integration of pervasive computing devices with
the everyday life, our increased reliance on information
originating from mobile phones, and growing ability of
such devices to sense, understand, and predict the world
around them open up new possibilities for impacting
human behaviour in a context-aware, personalised and
scalable manner.Current and future context inference,
behaviour prediction and action-effect models are
necessary parts of anticipatory mobile dBCIs. In addition,
such interventions require close integration of
psychological tools and machine learning techniques, since
the latter are not only used to infer the context that will
trigger the former, as is done in traditional mobile dBCIs,
but also to model the impact of the tools on the
behaviour change. We have presented a possible solution
for addressing the machine learning aspect of anticipatory
mobile dBCIs, namely through splitting the task into
context prediction and tool-effect modelling,
reinforcement learning, and latent learning. Yet, we
acknowledge that alternative solutions may exist, and are
looking forward to future practical implementations of
anticipatory mobile dBCIs.

Anticipatory mobile dBCIs are not only relevant for chang-
ing human behaviour through predefined intervention tools.
Potentially, they also open up a path towards analysing be-
haviour. These tools may provide guidance, but the actions
are in the end selected and performed by the user who bases
her decisions on her own judgement. Consequently, the
tool-action-effect learning loop includes non-determinism
brought in by the user’s intuition. While complicating
the design of the machine learning components, the non-

determinism effect is actually desirable, since it captures
human anticipation decisions in a mathematical model. We
believe that such models can prove valuable in behavioural
psychology to explain and understand human behaviour.

Finally, we have discussed the design of anticipatory
dBCIs around the context inferred from physical built-in
sensors on a phone. Digital breadcrumbs that we leave on
online social networks, media sharing websites and online
portals provide another important source of information,
the one that tells a lot about our traits, emotions,
intentions. Machine learning tools can turn these
breadcrumbs into signals for critical behaviour issues, as
evident by the analysis of the Youtube videos of a shooter
who killed seven people in Santa Barbara, CA [6]. In
future, we plan to investigate how digital breadcrumbs can
be mined for information pertaining to anticipatory dBCIs.
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