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The last decade has seen substantial advances in the capacity
to record behaviour and neural activity in humans in real-
world settings, to simulate real-world situations in laboratory
settings and to apply sophisticated analyses to large-scale
data. Along with these developments, a growing number of
groups has begun to advocate for real-world neuroscience
and cognitive science. Here, we review the arguments and
the available methods for real-world research and outline
an overarching framework that embeds key ideas proposed
in the literature integrating them into a cyclic process of
‘bringing the lab to the real world’ (recording behavioural
and neural activity in real-world settings) and ‘bringing the
real-world to the lab’ (manipulating the environments in
which behaviours occur in the laboratory) that combines
exploratory and confirmatory research and is interdisciplinary
(including those sciences concerned with the natural, built
or virtual environment). We highlight the benefits brought
by this framework emphasizing the greater potential for
novel discovery, theory development and human-centred
applications to the environment.
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1. Brain and behaviour in the real world and in the laboratory
1.1. The ecological validity of experiments
The human brain has evolved to survive in complex environments. We engage with and adapt our
behaviours to who and what surrounds us. For example, to get from A to B, we may use external
aids (e.g. GPS-guidance), or knowledge of the typical location of landmarks (e.g. tills to get out of
a supermarket). If a place is particularly crowded, we may ask other people for help. Thus, the
way we engage specific cognitive functions (e.g. navigation) depends on the specific environment,
namely, the physical as well as social setting in which the brain operates in any given moment (e.g.
while walking across a street, or making decisions, or talking to others). Yet, within psychology and
cognitive neuroscience, the traditional approach to studying behaviour has involved experiments that
do not incorporate the multiple, complex and interrelated variables typical of real-world environments,
nor the interplay between different cognitive functions in specific environments. Generally, cognition
and behaviour have been mainly investigated within a reductionist approach, broadly defined as the
practice of understanding more complex scientific phenomena in terms of smaller component parts.
Reductionism prioritizes parcellation of cognitive functions and control of environmental variables,
to ensure that the phenomena are easily identifiable and specified to a point that affords the estab-
lishment of causal relationships, at the expense of accounting for human behaviour in the specific
environments that characterize our daily lives. While this ensures that causal factors can be identified,
their impact can be limited to those same conditions identified in the specific experiment which may
differ from those in our everyday life.

Over the years many scholars have questioned this way of conducting scientific investigations and
there have been various calls for more ecologically valid, real-world approaches to psychological and
neuroscientific research. The term ecological validity was first introduced by Brunswik [1,2] to refer
to the correlation between a proximal sensory cue (e.g. stimulation of the retina) and a distal variable
(e.g. object in the environment). It was then adapted by Orne [3] to refer to the generalization of
experimental findings to the real world outside the laboratory (see [4] for a discussion of the relation
between these two meanings of the term). Nowadays the term is used in a way more similar to Orne
[3], to refer to the extent to which results of a study have a bearing on real-world behaviour, in
terms of both generalizability of the findings and their practical implications [3–6]. Ecological validity
has been used to refer to the stimuli (i.e. emphasis on the use of more naturalistic materials) and/or
the task (i.e. use of more life-like tasks) (see [6] for a more detailed discussion). Generalizability to
real-world settings is, however, often an implicit underspecified assumption, rarely explicitly tested in
psychology and cognitive neuroscience (see [6] for a discussion). Ecological validity requires consider-
ation of the individual (their body not just the brain, and their history) as well as consideration of
the specific environments in which behaviours take place [7]. Even when the behavioural and neural
mechanisms investigated in the laboratory and those in the real-world situations are highly similar,
still insufficient consideration of environmental elements can lead to faulty inferences and ill-posed
questions/predictions about how humans behave as different environments may determine different
behaviours, depending on what would be the most suitable [8] or ‘optimal’ [9] behaviour. As Kihlstrom
[10] put it: ‘The purpose of laboratory research is to understand the real-world: to make the problem
simple so that it can be studied effectively, and to control relevant variables so that important relations,
especially causal relations, can be revealed. Unfortunately, generalisation from the lab to the real-world
requires an inferential leap: its legitimacy depends on the degree of similarity between the conditions
that are obtained in the laboratory and those found in the real-world’ (p. 6).

Especially in recent years, thanks to the advent of new technologies that allow for mobile recording
of behaviour and brain activity simultaneously, from multiple agents, and in the wild, as well as
the availability of new analytical tools [11–14], many scholars have raised concerns relating to the
ecological validity of experiments carried out within our traditional reductionist approach and have
made proposals to improve ecological validity and therefore generalizability from behavioural and
neural responses elicited in the laboratory to those elicited in real-world situations [3,15–29]. In this
paper, we first briefly summarize the proposals that have been put forward to increase the ecological
validity of studies and the methods that can be used to carry out real-world cognitive science and
neuroscience. We then conclude by presenting a framework that integrates these previous proposals in
a broader approach to the study of humans in their environment.
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2. Towards real-world cognitive science and neuroscience
Bannister [30] described the traditional reductionist approach to human research in the following
manner: ‘In order to behave like scientists, (experimental psychologists) must construct situations in
which our subjects are totally controlled, manipulated and measured. We must cut our subjects down
to size. We construct situations in which they can behave as little like human beings as possible and we
do this in order to allow ourselves to make statements about the nature of their humanity’.

A number of recent papers have discussed the main limitations of traditional experimental
paradigms and provided solutions to improve ecological validity. Two key criticisms raised to the
traditional reductionist experimental approach are (i) the use of impoverished rather than multidimen-
sional and dynamic stimuli (e.g. using static pictures to study emotion processing) and (ii) the use
of artificial and decontextualized rather than real-life-like tasks (e.g. asking participants to decide if a
string of letters is a word to study language processing) that force participants to ‘behave as little as
possible like human beings’ as Bannister put it [30].

The need to move from impoverished, often unidimensional and static stimuli to the use of
real-life-like paradigms involving complex and dynamic stimuli has been argued for by a number
of scholars [27,28]. For example, pictures are being widely used in research as proxy of real objects;
however, our processing of images differs from our processing of real objects in many important ways,
most prominently the fact that images do not afford actual actions. Images may evoke actions, but
they lack actability, the potential to interact with the represented object meaningfully [27]. To study
real-life sensory experience, neuroscientists are increasingly employing dynamic videos, speech and
music that incorporate sensory stimuli typically encountered in everyday life [31,32]. These paradigms
provide a reasonable approximation to how we encounter stimuli in everyday life and therefore are
preferable to the controlled and impoverished stimuli traditionally used. As reviewed by Sonkusare
et al. [28], evidence suggests that the brain may be more strongly ‘tuned’ to naturalistic than artificial
stimuli. Life-like stimuli have been shown to lead to quantitative changes in responses, including
improvements in memory [26,33,34], object recognition [35], attention and gaze capture including in
infants [36,37]. These findings show how realistic stimuli can amplify or strengthen behavioural and
brain responses that might otherwise be difficult to observe when relying on proxies. Thus, increasing
the naturalness of the stimuli used in experiments is one possible way in which ecological validity of
experiments can be improved.

The use of life-like tasks that do not limit the active role of participants is another way in
which researchers have improved the ability of experiments to generalize to real-world situations
[23,26]. The importance of considering participants as active agents has been strongly argued for
in social neuroscience [38,39]. For decades in this field, the ‘social’ component of social cognition
research was limited to individuals observing a social situation while sitting alone in front of
a computer screen or constrained in an fMRI scanner. While this provides a clear paradigm
within which to test hypotheses, it does not necessarily adhere to how humans process and
experience social interactions in real life leading to questioning the value of such an approach. In
recent years, ‘second-person’ neuroscience has become increasingly popular [38,39]. Its basis is the
assumption that observing social interactions is fundamentally different from engaging in social
interactions, from either a neurobiological, physiological, cognitive or behavioural perspective [38].
For example, it has been shown that key regions of the ‘mentalizing network’ (including the
ventral medial prefrontal cortex (vmPFC), dorsomedial prefrontal cortex (dmPFC) and temporopar-
ietal junction (TPJ)) do not respond selectively only to tasks (with solo participants) requiring
thinking about another person’s mental states, but are consistently found to be sensitive to level of
engagement with a social partner, regardless of task demands [40–45].

Naturalistic paradigms can address questions concerning brain and behavioural functions in the
real world, therefore allowing us to ‘bring the laboratory to the real world’. This approach leverages
mobile recording (see [46] and table 1a) to improve ecological validity by investigating brain and
behaviour directly in the real world, thus allowing researchers to study, for example, the brain
dynamics underscoring learning of new material in the classroom by pupils [46,70]. It overcomes the
two limitations described above; it does introduce, however, a very large degree of complexity where
true causes of behaviour are difficult to disentangle from other sources of variability. A complementary
approach consists of ‘bringing the real world to the laboratory’. Here, some degree of control on
the stimuli and setting is used in the context of non-reductionist paradigms. One example is to ask
participants to watch full-length movies, or listen to audio books while they are scanned to investigate
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Table 1. A survey of methods for real-world cognitive science and neuroscience.

  method   description   key reference

(a) methods that allow to bring the laboratory to the real world

(mobile) electroencephalography (EEG) non-invasive recording of electrical activity of the brain ‘Mobile EEG in research on neurodevelopmental disorders:

opportunities and challenges’ [47]

(mobile) functional near-infrared spectroscopy

(fNIRS)

non-invasive recording of brain activity detecting changes in blood

flow

‘A review on the use of wearable functional near-infrared

spectroscopy in naturalistic environments’ [48]

(mobile) optically pumped

magnetoencephalography (op-MEG)

non-invasive recording of brain activity detecting magnetic fields

produced by the brain’s electrical currents

‘Moving magnetoencephalography towards real-world

applications with a wearable system’ [49]

global positioning system (GPS) provides (real-time) geolocation and time information ‘Review of GPS travel survey and GPS data-processing

methods’ [50]

indoor tracking provides (real-time) geolocation through tracking devices (e.g.

Bluetooth)

‘Indoor tracking: theory, methods and technologies’ [51]

(mobile) electrodermal activity (EDA)/galvanic

skin response (GSR)

monitoring changes in the skin’s electrical conductance, due to sweat

production

‘Neighbourhood environments influence emotion and

physiological reactivity’ [52]

heart rate (HR)/heart rate variability (HRV) monitoring average heart beats and variability between heart beats ‘Interoceptive ability predicts survival on a London trading

floor’ [53]

(mobile) eye-tracking monitoring real-time changes of eye gaze direction and duration ‘Head-mounted eye tracking: a new method to describe infant

looking’ [54]

mobile sensing using smartphones monitoring and extraction of a variety of information using sensors

that are embedded in mobile phones

‘The rise of people-centric sensing’ [55]

(b) methods that allow to bring the real world to the laboratory

virtual reality (VR) performing tasks in computer-generated environments ‘Can simulated nature support mental health? Comparing

short, single-doses of 360 degree nature videos in virtual

reality with the outdoors’ [56]

augmented reality (AR) overlaying computer-generated aids onto real environments ‘Is that me?—embodiment and body perception with an AR

mirror’ [57]

manipulated and controlled physical

environments

reconstructing full-scale environments to minimize real-world

unpredictability and enable experimental control

‘Train design features affecting boarding and alighting of

passengers’ [58]

(c) data processing and modelling of real-world data

space syntax theory and method for investigating relationships between society

and space

‘Ward layout, communication and care quality: spatial

intelligibility as a key component of hospital design’ [59]

geographic information system (GIS) a spatial system to create, manage, analyse and map location data

(where) and attribute data (what)

‘Geo-EEG: towards the use of EEG in the study of urban

behaviour’ [60]

facial expression and body-pose estimation   automatic facial behaviour analysis toolkit with available source

code for both running and training the models

  OpenPose is a popular computer vision real-time system designed

for multi-person keypoint detection. It can identify and track

various human body parts, including the body, foot, face and

hands, through images and videos

‘OpenFace 2.0: facial behavior analysis toolkit’ [61]; OpenPose

[62]

longitudinal and cohort studies collecting multi-purpose data on a large sample to investigate

relations between outcomes (e.g. health) and exposures (e.g.

deprivation), often over time, in the general population and in

subpopulations

‘The role of neighbourhood greenspace in children’s spatial

working memory’ [63]

encoding and decoding of fMRI data encoding: by fitting large feature vectors to voxel-wise fMRI activity, it

is possible to account for a wide range of environmental variables

and complex, nonlinear interaction effects typical of, e.g. movie

watching. Decoding: reconstruction of visual, semantic or other

information from non-invasive brain recordings (MEG, fMRI, EEG)

encoding: ‘Natural speech reveals the semantic maps that

tile human cerebral cortex’ [64]; ‘The revolution will not

be controlled: natural stimuli in speech neuroscience’

[65]. decoding: ‘Semantic reconstruction of continuous

language from non-invasive brain recordings’ [66]; ‘I can

see what you see’ [67]

(Continued.)
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language comprehension or semantic processing [31], or asking participants to navigate simulated real-
world spaces while in the scanner [71]. An important issue with this approach is to know which
dimensions of the real-world experience can be controlled or eliminated, given that our hypotheses are
most often based on prior experimental (controlled) studies. Kihlstrom [4] further cautions that: ‘An
experiment can employ extremely life-like stimulus materials in an extremely lifelike setting… But the
experiment would still lack ecological validity if it also contained demand characteristics that are not
present in the nonexperimental situation that it is intended to represent’ (pp. 468–469).

A proposed solution to this issue is to relax the divide between data-driven and hypothesis-testing
approaches as argued by, for instance, the ‘system identification approach’ in cognitive neuroscience
[23,72]. Here, hypotheses are not formulated in terms of which predetermined dimensions of stimuli
should engage specific neural systems, as in the traditional reductionist approach, but in terms of how
well a number of alternative explicit computational models, trained to encode an observed pattern
of neural responses from a subset of the stimuli, predict neural responses to new stimuli (validation
set) using large random samples of naturalistic stimuli such as audio books [73]. These inductive
methods have been argued to provide a better approximation of how naturalistic stimuli map into
brain networks [72,74]. However, results from this approach tend to be difficult to interpret [75] and
while it may work well with fMRI data it is not clear to what extent it could be used more broadly
across cognitive domains and behavioural responses.

A broader approach, proposed by Matusz et al. [76] and before that by Kingstone [77], is in
terms of a research cycle. Their framework goes beyond calling for the use of naturalistic stimuli
and life-like settings to proposing how these can be integrated into a research cycle. In particular,
they envision three stages: (i) classic laboratory research; (ii) naturalistic laboratory research (similar
to what we referred to above as bringing the real world to the laboratory); and (iii) fully naturalis-
tic research (similar to what we referred to as the approach of bringing the laboratory to the real
world). They portray these three stages as complementary rather than alternative manners to approach
cognitive neuroscience questions highlighting the importance and complementarity of both confirma-
tory (hypothesis-driven, typical of classic laboratory experiments) but also exploratory (data-driven,
typical of fully naturalistic research) research in the scientific process. We will return to this framework
below when we discuss our own proposal.

In the next section, we review the methods available to researchers for implementing naturalistic
paradigms. In addition to methods for recording brain and behavioural functions in the real world and
methods for simulating real-world conditions in laboratory settings, we further review methods for
data processing and modelling of real-world data.

3. Methods available for real-world cognitive science and neuroscience
As discussed above, arguments for more ecologically valid approaches have been laid out throughout
past decades [1,2,24,78]. This poses the question of why practices have not yet fully changed. The
answer is likely to be because it is very challenging. First, it requires resources (technologies, facilities
and interdisciplinary teams) that are not as easily available, especially in research cultures that favour
individual contributions over team efforts. Second, it is the case that studies providing better approxi-
mation of real-world settings can involve complex designs and produce multidimensional data that are
hard to analyse and interpret. Below we summarize a number of methods that can support ecologically
valid research.

Table 1. (Continued.)

  method   description   key reference

data-driven agent-based models by using data from real-world experiments, it is possible to

build models describing the behaviour of individuals, groups,

communities and cities

‘An introduction to agent-based modeling: modeling natural,

social and engineered complex systems with NetLogo’

[68]

foundational model-based simulations and

experiments

the advent of foundational models is opening new possibilities for

studying behaviour and interactions in simulated environments,

by exploiting their richness and expressivity

‘Generative agents: interactive simulacra of human behavior’

[69]
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3.1. Taking the laboratory into the real world
Taking the laboratory into the real world to observe phenomena as they naturally unfold can often
call for different or novel protocols and methods (see figure 1 and table 1a). Researchers may need to
follow their participants’ actions in their natural environments, resulting in experimental sessions run
in uncommon settings and/or at uncommon hours. Examples include studies where the ‘laboratory’
moved to people’s bedrooms to capture their thoughts after being woken at night [83], to the streets
of London where people’s memory and brain activity were measured while they walked around
[84], tracked through GPS to locations to test navigation [85] or a classroom where student–teacher
interactions were observed and neural synchronization studied to capture learning as it occurred [82].
Mobile brain and behavioural monitoring devices allow the flexibility required in these studies and
rapid technical developments may allow even more ambitious paradigms to be developed [86,87].
Mobile smartphone devices with a plethora of sensors also provide excellent opportunities such as the
opportunity of on-device computation, including the implementation of machine learning algorithms
for behaviour inference [88–90].

3.2. Taking the real world into the laboratory
Taking the complexity of the real world to the laboratory allows for the manipulation of environmental
variables to establish their causal role. Virtual reality (VR) and augmented reality (AR) enable people
to experience highly controlled real-world-like environments at a low cost. Various studies have shown
that findings in virtual worlds translate to findings in reality, making these methods particularly useful
in terms of ensuring experimental control and ecological validity, while minimizing costs and physical
barriers to participating [91]. Theatre-like research facilities can also provide remarkable real-world
approximation, allowing us to reconstruct and adapt full-scale physical environments with a high
level of precision and control (see UCL’s Person Environment Activity Research Laboratory, PEARL
[92]). In figure 2, we present examples of studies that reproduce in the laboratory key elements of
complexity from the real world. Table 1b provides some of the methods for (re-)creating, controlling
and manipulating environments in the laboratory—both digitally and physically.

3.3. Analysing and modelling real-world data
The data collected with the methods above are also more complex than in standard laboratory-based
experiments, e.g. the use of mobile technologies to carry out research in the real world does not
guarantee that they necessarily increase their validity [95]. For example, during real-world wayfinding
or navigation experiments, the researcher can control the start and end point of the route that a
participant takes, and the task. Much more difficult to control are the unforeseeable events that occur
en route, e.g. cars, people, accidents, bad weather. Such variables can affect performance and thus
need to be factored into the analysis. Mobile and personal technologies allow for collecting contextual
multi-modal data (including social media data) describing the environments in which individuals act
[90]. From large longitudinal and cohort studies to studies collecting data in real time, data analytics
can be used to explore how people, things and places connect on a much larger scale, allowing for
predictions of human behaviour that take into account the many concurring variables (see table 1c).

A unique challenge for data analysis posed by brain recordings during naturalistic tasks (e.g.
movie-watching) is the presence of linearly and nonlinearly correlated confounding variables. These
limit the effectiveness of standard statistical tools such as t-tests. However, encoding models may
present the solution to this problem: by fitting individual regression models to each voxel, confound-
ing variables may be entangled from the observed effect (if the variable can be quantified and
included in an arbitrarily large feature vector [65]). An alternative use of encoding models is to fit
word embeddings from LLMs to the activity of each voxel during a given task, to understand how
closely LLMs and humans align during, for example, semantic processing [64]. Finally, combining this
approach of fitting voxel-wise encoding models with the predictive power of LLMs, it has become
possible to reconstruct semantic representations in the human brain from non-invasive brain record-
ings such as fMRI [66].

Real-world data can also be used to develop a variety of data-driven agent-based models [68],
which can be extended to represent complex models of multi-agent systems for studying groups,
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communities or cities [96]. These in silico simulations can be seen as a starting point to develop more
concrete hypotheses from real-world patterns that can then be tested in laboratory studies. An example
is decision-making, which can be studied using simulated agents as a starting point for experiments
involving humans [97,98]. The recent advent of large language models/foundational models [99] is
introducing new opportunities in terms of realistic simulation of human behaviour. For example, it
is possible to recreate entire simulated societies of agents based on foundational models and observe
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Figure 1. Taking the laboratory into the real world. (a–c) Adapted from Burgess et al. [79]. Functional near-infrared spectroscopy
(fNIRS) was used to record activity from participants walking in Queen Square in London. (a) Recording device. (b) Sensor locations
on the scalp to record prefrontal activity beneath. (c) Map of Queen Square marking locations of social prospective memory cues
(large blue stars), non-social prospective memory cues (large red stars), social functional haemodynamic events (blue asterisks) and
non-social functional haemodynamic events (red asterisks). (d–f)  Adapted from Schläpfer et al. [80]. Large-scale mobility data from
across the world are used to develop a scaling law that considers temporal and spatial dimensions of human movement. (d) Map
indicating population density in Black Bay, Boston, as deduced from mobile phone data. (e) Visitor flow is shown to depend on travel
distance (r) and visiting frequency (f), with this scaling relation holding true for different urban regions around the world. (f)  Adapted
from Davis et al. [81]. Testing large-scale spatial ability; participants at location A point towards locations B and C, or imagine they are
at location B and point to location C. (g–j) Adapted from Dikker et al. [82]. EEG was used to record electrophysiological activity while
students were engaged in classroom activities to explore brain-to-brain group synchrony and class engagement. (g,h) Experimental
set-up involved recording EEG activity of 12 students over 11 teaching days; red bars indicate individual EEG recording sessions.
(i,j) Twelve students wear EEG headsets to allow for brain-to-brain synchrony to be recorded. All images are combined and reproduced
with permission under the Creative Commons Attribution 4.0 International Licence.
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their interactions and evolution [69]. These studies can be used to develop hypotheses and/or to
complement real-world field experiments.
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Figure 2. Taking the real world into the laboratory. (a–f) Adapted from Javadi et al. [71] and Gregorians & Spiers [93]. Graph
theoretic analysis has been applied to street networks following a ‘space syntax’ approach based on architecture and urban data
science. This analytical approach was combined with an fMRI BOLD data and film simulation of streets of Soho in London (UK) to
examine how the brain tracks spatial information during navigation. (a) Top left: degree centrality plotted for each street segment.
Bottom: axonometric projection of the buildings on a map of Soho, with degree centrality projected above. Top right: change in degree
centrality and right posterior hippocampus response at each individual boundary transition (1–6). (b,c) During Street Entry Events,
right posterior hippocampal activity correlated significantly with the change in degree centrality for Navigation and Navigation >
Control. (d) Parameter estimates in Navigation and Control conditions for mean activity in the right posterior hippocampus region
of interest (ROI) for a model of degree centrality. Error bars denote the s.e.m. (e) Parameter estimates in the Navigation > Control
condition for mean activity in the right posterior hippocampus ROI for a model containing degree centrality, betweenness centrality
and closeness centrality. (f) A still from one of the movies used for the fMRI. (g) Images reproduced from https://www.pearl.place.
Real-world environments are physically recreated at the PEARL facility to study tube carriages and greenspace respectively under
controlled conditions. (h–j) Adapted from Yu et al. [94]. Head-mounted cameras are used to study the link between infant’s attention
and caregiver’s naming of objects in home-like environments. (h) Infants wear a head-mounted camera while playing with toys freely
with their parents. (i) Example of an infant’s gaze on an object when the parent names the object. (j) Infant gaze aligning with parent’s
naming of objects, using a window of 3 s from the onset of the object naming. Images combined and reproduced with permission
under the Creative Commons Attribution 4.0 International Licence.
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4. The ecological brain framework
4.1. A cyclic process through ‘the wild’ and ‘the laboratory’
The methods just described provide a toolkit to measure real-life brain and behavioural functions that
has the potential to provide powerful insights. Below, we argue methods that ‘bring the laboratory
to the real world’ (table 1a) and those that ‘bring the real world to the laboratory’ (table 1b) should
be used in a complementary manner in a cyclic process. We label this framework ‘Ecological Brain’.
It brings together different perspectives reviewed above [17,19–21,23,25,26,28,29] providing a general
basis for theory building and discovery where research in the real word and in the lab are integrated.

Ecological Brain synthesizes, in a general framework, recent real-world approaches to capturing the
complexity of human behaviour in interaction with the environment. It proposes a cyclic approach
in which exploratory research in the real world provides hypotheses to be tested and guides the
design of laboratory experiments, particularly with respect to characterizing environmental variables,
but equally, hypotheses that are developed in the laboratory are validated in the real world [23]. This
is extended in a continuous cycle of refinements and new hypothesis generation, leading to a new
standard in research that cannot be achieved using real-word or laboratory studies alone, regardless
of how life-like they are (see figure 3). New (and emerging) technologies and data analytics are key
to this approach allowing for a transfer of the rigour of laboratory studies into research in the wild
(the real world) and the complexity of the real world into research in the laboratory in such a way
that they can inform each other (figure 3). This framework relates to the three-stage cyclical model
for real-world cognitive neuroscience research proposed by Matusz et al. [76]. Just like Matusz et
al., we go beyond calling for the use of naturalistic stimuli and life-like settings to proposing how
this can be integrated into a research cycle encompassing both real-world settings and laboratory.
We emphasize the importance and complementarity of both confirmatory (hypothesis-driven) and
exploratory (data-driven) research in the discovery process, as further discussed below. Our proposal
differs from Matusz et al.’s one in that we do not see a strong motivation for maintaining traditional
(reductionist) laboratory approaches in order to be able to carry out confirmatory research as control
of key environmental factors can be achieved in a laboratory setting without necessarily having to
sacrifice key elements of environmental complexity. In the Ecological Brain framework, this can be
achieved because key environmental factors to manipulate or control in the laboratory are identified
in more exploratory studies in the real world (see table 1 and figure 1). Thus, this framework fully
brings exploratory and confirmatory research together. More generally, as already argued long ago by
others [5,100], the Ecological Brain framework proposes to shift the emphasis from the study of the
individual to the study of the interaction between the individual and the environment highlighting
the importance of characterizing the environment (being physical or social). Thus, interdisciplinarity is
central to the approach. We elaborate on these two aspects below.

4.2. The importance of exploratory research for characterizing the environment
Natural behaviours are necessarily contingent on their context. In biological terms, following Gomez-
Marin & Ghazanfar [7], context can be conceived as the ‘space’ for the behaviour, given by the
interaction between the body of the animal and the physical world around. Each person then may
experience the world around differently given differences in their body and their histories (develop-
mental, social and cultural). A key role for the body and for individual differences (within and
between groups) have long been recognized [101–104] and are now considered as an important part
of our studies and theories [105–107]. However, the interactions of these factors with the specific
environments in which the brain operates need also to be considered in the theories that we develop
and in the studies testing them. In order to achieve that, the environments need to be characterized,
namely, those environmental elements associated with the specific behaviours of interest need to be
identified. Examples of how this can be done successfully are provided in figure 1a–f.

In Ecological Brain, we suggest that naturalistic studies in which people navigate, learn, communi-
cate, etc., in their real-world environments can allow us to identify those key environmental elements.
Naturalistic studies therefore inform the experimental investigations in the laboratory. Thus, in the
Ecological Brain framework, the environment is not just the stage where our actors (experimental
variables) play, but becomes an integral component of the performance. Therefore, operationalizations
of the research question(s), hypotheses and predictions have to include aspects of the physical, social,
personal and cultural environment [108].
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This can be achieved by integrating research ‘in the wild’ and ‘in the laboratory’. Research ‘in
the wild’ is more exploratory and, as such traditionally has been considered useful for pilot studies,
but overall less important than confirmatory hypothesis-driven research. This is not the case in the
Ecological Brain framework where exploratory research is necessary to identify the key contextual
variables and therefore it is a necessary step for theory development, leading to hypotheses concerning
how these variables or their interactions would affect the phenomenon that can then be experimen-
tally manipulated. Although conclusions drawn from exploratory research cannot identify causes
and effects, exploratory ‘in-the-wild’ research using mobile technology and data-driven statistical
approaches grounds our studies in the laboratory and therefore it should be treated au par and
complementary, with confirmatory laboratory-based research. Moreover, in a cyclic manner, research
in the real world can and has been used to test hypotheses and theories developed in the laboratory
[109] using computational models to provide theory-driven analyses of large and complex real-world
datasets [31,110].

4.3. The importance of interdisciplinarity
To be able to meaningfully bring the real world to the laboratory (and vice versa), the envi-
ronment needs to be characterized and its complexity analysed and related to brain and behav-
iour responses. For this to happen, psychologists and neuroscientists are not enough. Real-world
research must draw from different disciplines: those concerned with methodological and techno-
logical advances (e.g. computer science and medical physics) but crucially also, those concerned
with the study and quantification of the environment (e.g. engineering, architecture, planning,
geography). Thus, the approach advocated here is necessarily interdisciplinary. It does differ,
however, from other related approaches (including human ecology, behavioural ecology, environmen-
tal psychology, social geography, biological anthropology, population ecology, sociology and neuroe-
thology) in that its interdisciplinarity specifically serves the objective of capturing the complexities
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Figure 3. A framework for the study of human brain and behaviour in its ecology. Traditionally, research in ‘the wild’ is considered
exploratory and descriptive with marginal bearing on theory development. Research in ‘the laboratory’ is considered as confirmatory
and capable of testing theories. In laboratory research, stimuli are simplified and controlled, so the effects can be isolated to
the particular aspects of the stimuli and/or task. Here, we illustrate how an ‘Ecobrain’ approach moves beyond this distinction
to a cyclic research process in which real-world phenomena are identified and studied both in the real world (left) and in the
laboratory (right). Real-world research, with the use of mobile technologies for continuous recording of behavioural, physiological
and neural activity, combined with data-driven modelling approaches, allows for identification of key environmental variables and for
prediction of behavioural, physiological and neural responses. The laboratory, supplemented with technologies that allow for control
of environmental variables, allows for theory testing in settings that embed key environmental variables identified in real-world
research. Laboratory research can also provide new insights that can guide further research in the real world. Image credits: Top
left composite: EEG image reproduced with permission from Mentalab, contributors to making data acquisition in real-life scenarios
possible. Seoul’s skygarden image, reproduced with permission from Ossip van Duivenbode. Top right composite: laboratory-based
London Underground study image reproduced with permission from PEARL. All other images are combined and reproduced with
permission under the Creative Commons Attribution 4.0 International Licence.

10
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240762

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 D

ec
em

be
r 

20
24

 



of human brain-behaviour, real-world environments and their bidirectional relationship. In other
words, interdisciplinarity contributes to understanding how humans impact and are impacted by the
surrounding environment, including the neural mechanisms engaged in this process. For example,
a recent study testing how the environment impacts the development of spatial navigation ability
required psychologists to develop a valid test of navigation, geographers to develop new methods
to quantify the structure of the environment and computer scientists to apply agent-based modelling
to make predictions about behaviour [111]. This means that real-world research should go beyond
understanding behaviour and its underlying brain functions per se. These contributions are bidirectional,
as it is the case not only that insights from other disciplines are necessary to better understand brain
and behaviour, but also that a better understanding of brain and behaviour can lead to novel insights
in the other fields.

5. Concluding remarks
A growing number of cognitive scientists and neuroscientists have argued that understanding brain,
behaviour and their relationship requires understanding how people function in their ecology [17,19–
21,23,25,26,28,29]. While we believe that reductionism has served psychology and cognitive neuro-
science well as a principle for scientific research, adherence to pure reductionism has produced
fragmented research where parcellization of mental events is most often linked to empirical tractability
in the lab, rather than a deeper understanding of mental functions in their ecology [112,113].

The environment, the context traditionally controlled in laboratory studies, cannot be dismissed
a priori. We go beyond calling for more naturalistic stimuli and life-like tasks in experiments to
proposing a continuous cycle between research in the real world and in the laboratory combining:
(i) mobile methods that allow for more exploratory studies designed to characterize brain and
behavioural responses in specific real-world contexts and (ii) VR, AR and other methods that allow
for bringing those complex environmental variables (identified in real-world studies) in controlled
laboratory settings. In the Ecological Brain approach, new discoveries come about as a consequence of
the iteration between real-world and laboratory-based research (figure 3).

Shifting how we study brain and behaviour can change how we describe/operationalize our object
of investigation. For example, after Gibson [16,36] introduced the concept of affordances (natural (i.e.
not learnt) relationships between perceptual properties of the environment and relevant actions), the
ways in which scientists thought about vision was expanded. Instead of considering vision simply as
a process of classification or categorization, introducing affordances made vision an active process in
which different visual stimuli carry different weights depending upon what they afford a person to
do. We suspect shifting the focus of studying phenomena through the cyclic framework proposed here
can lead to questioning at least some existing tenets in the study of human cognition. In this way,
the Ecological Brain framework may help the field to move beyond the current criticisms concerning
methodological practices [114,115], and lack of clear theoretical models [116].

It is important to acknowledge that conducting research that can be open-ended, data-driven,
with multi-level data collection either outside the laboratory or in the laboratory with close-to-
real-world conditions, is still very challenging. There are however ways in which the scientific
community can support a broader uptake of this approach. One way is by sharing preprocessed
data acquired in the real world (including code for processing and analysis as well as tools for
reproducibility and for enabling further experiments). For example, the Naturalistic Neuroimaging
Database (https://www.naturalistic-neuroimaging-database.org/ [32]) provides fMRI data from 86
participants each watching a full-length movie that can be used to address a variety of questions
(e.g. anxiety and amygdala connectivity [117]). Datasets containing mobile sensing data of entire
populations of individuals are also increasingly available. Examples include Reality Mining at
MIT (https://hd.media.mit.edu/reality/reality/) [118] and StudentLife at Dartmouth (https://studen-
tlife.cs.dartmouth.edu/) [119]. We strongly encourage others to make naturalistic datasets available
as well as any code, and analytical tools (e.g. https://naturalistic-data.org/content/intro.html [120]) such
that we can move closer to unravel the mysteries of the human brain and behaviour in its ecology.
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